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Abstract

A Bayesian algorithm to retrieve profiles of cloud ice water content (IWC), ice particle
size (Dy,e), and relative humidity from millimeter-wave/submillimeter-wave radiometers
is presented. The first part of the algorithm prepares an a priori file with cumulative dis-
tribution functions (CDFs) and empirical orthogonal functions (EOFs) of profiles of tem-
perature, relative humidity, three ice particle parameters (IWC, D, distribution width),
and two liquid cloud parameters. The a priori CDFs and EOFs are derived from Cloud-
Sat radar reflectivity profiles and associated ECMWF temperature and relative humidity
profiles combined with three cloud microphysical probability distributions obtained from
in situ cloud probes. The second part of the algorithm uses the CDF/EOF file to perform
a Bayesian retrieval with a hybrid technique that uses Monte Carlo integration (MCI) or,
when too few MCI cases match the observations, uses optimization to maximize the
posterior probability function. The very computationally intensive Markov chain Monte
Carlo (MCMC) method also may be chosen as a solution method. The radiative trans-
fer model assumes mixtures of several shapes of randomly oriented ice particles, and
here random aggregates of hexagonal plates, spheres, and dendrites are used for trop-
ical convection. A new physical model of stochastic dendritic snowflake aggregation
is developed. The retrieval algorithm is applied to data from the Compact Scanning
Submillimeter-wave Imaging Radiometer (CoSSIR) flown on the ER-2 aircraft during
the Tropical Composition, Cloud and Climate Coupling (TC4) experiment in 2007. Ex-
ample retrievals with error bars are shown for nadir profiles of INC, D,,., and relative
humidity, and nadir and conical scan swath retrievals of ice water path and average
D..e- The ice cloud retrievals are evaluated by retrieving integrated 94 GHz backscat-
tering from CoSSIR for comparison with the Cloud Radar System (CRS) flown on the
same aircraft. The rms difference in integrated backscattering is around 3dB over a
30dB range. A comparison of CoSSIR retrieved and CRS measured reflectivity shows
that CoSSIR has the ability to retrieve low-resolution ice cloud profiles in the upper
troposphere.
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1 Introduction

There is ongoing interest in remote sensing of ice clouds due to their importance in
radiative cloud feedbacks, precipitation, and upper troposphere water cycling. A fun-
damental ice cloud parameter is mass, such as ice water content (IWC) or its integral
ice water path (IWP), which is needed to evaluate ice clouds in modern general cir-
culation models. There are several ice cloud mass remote sensing techniques in use
from satellites, including solar reflectance (e.g. Rossow and Schiffer, 1999; King et al.,
1997), nadir viewing microwave (e.g. Ferraro et al., 2005), microwave limb sounding
(e.g. Wu et al., 2006; Rydberg et al., 2009), and the CloudSat radar (Stephens et al.,
2008; Austin et al., 2009). All of these approaches to sensing ice cloud mass apply
to limited ranges of IWP, have limited spatial coverage, and/or have relatively low ac-
curacy. In fact, comparisons of global ice mass datasets from these techniques (Wu
et al., 2009; Eliasson et al., 2011) generally show poor agreement. Ice cloud mass
can be obtained with higher accuracy from these satellite instruments using retrieval
algorithms that combine instruments (e.g. Delanoe and Hogan, 2010).

High frequency (150 GHz to 900 GHz) microwave (or submillimeter-wave) radiome-
try is a developing technique for remotely sensing ice cloud mass (Gasiewski, 1992;
Evans and Stephens, 1995b; Evans et al., 1998, 2005; Buehler et al., 2007). Scanning
submillimeter radiometry has some advantages over existing techniques in that it is
fundamentally more sensitive to ice particle mass (and thus potentially has the best
IWP accuracy) and has good spatial coverage from low Earth orbit.

Regardless of the technique, remote sensing ice cloud mass is difficult because
there are many confounding factors that affect the measured radiances or backscat-
tering. Depending on the technique, these factors include ice particle shape, particle
size distribution, cloud height or temperature, vertical variability in the cloud, absorp-
tion by water vapor, attenuation by the cloud itself, effect of liquid cloud in and below
the ice cloud, and surface emissivity or reflectivity. Some ice cloud sensing techniques
have multiple wavelengths that give independent information to solve for some of these
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factors, but all techniques require a priori information about many of these factors.
The simpler retrieval algorithms fix any factor that cannot be retrieved, for example,
assuming a particular mixture of particle shapes, a fixed size distribution for each ef-
fective radius, homogeneous ice cloud, no underlying water clouds, and a specified
surface albedo depending on surface type. Making these assumptions then allows for-
ward radiative transfer modeling to be used to construct a lookup table that, for ex-
ample, relates two observed radiances to water path and effective radius. These fixed
assumptions might be fairly arbitrary or based on careful analysis of in situ ice cloud
data and other a priori sources. More sophisticated retrieval algorithms deal with the
fact that in the real atmosphere the confounding factors vary over certain ranges and
covary with each other.

The usual underlying framework for this approach is Bayes theorem and Bayesian
probability concepts. In the Bayesian framework a priori information is specified with a
probability density function (pdf). A Bayesian pdf is not about how frequently a param-
eter has a particular value, but instead a pdf specifies how likely the parameter is to
have particular values. Thus a Bayesian prior pdf should specify realistic distributions
of parameter values and their inter-relationships before the measurements are applied.
An important example for ice clouds is that we know from in situ measurements that
characteristic particle size is negatively correlated with temperature and positively cor-
related with ice water content, and both IWC and particle size are positive and have a
distribution that much closer to log-normal than normal. Bayes theorem says that the
posterior pdf is proportional to the product of the prior pdf and the likelihood pdf, which
is the conditional probability of the measurement vector given a particular atmospheric
state. In the Bayesian framework the retrieved parameter, say IWP, is not a single value,
but a whole posterior pdf specifying a range of likely values. It is difficult to deal with a
retrieved pdf for each pixel, so usually the posterior pdf is summarized with its mean
or mode and standard deviation (or other measure of its width). In cases of multiple
modes in the posterior pdf, these summarizing quantities can be quite misleading.
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One special case of a Bayesian retrieval methodology that has become popular
recently in ice cloud remote sensing is optimal estimation, usually in the framework
developed by Rodgers (2000). Examples of retrieval algorithms that use optimal esti-
mation include the CloudSat IWC algorithm (Austin et al., 2009) and combined radar,
lidar, and infrared radiometer algorithms (Zhang and Mace, 2006; Delanoe and Hogan,
2010). Rodgers (2000) optimal estimation framework has also been used to explore
the information content of various visible and infrared wavelengths for retrieving ice
clouds (Cooper et al., 2006). Optimal estimation is simpler and often more efficient than
the fully general Bayesian framework because it assumes that the prior and likelihood
pdfs are Gaussian and that the forward radiative transfer function is only moderately
nonlinear. By transforming to log variables optimal estimation can also be used easily
with lognormal distributions as was done in Austin et al. (2009). Unfortunately, optimal
estimation is sometimes poorly implemented in cloud remote sensing. The prior pdf
covariance matrix is often assumed to be diagonal, ignoring the considerable informa-
tion contained in the known correlations between variables. The prior pdf parameters
are sometimes chosen somewhat arbitrarily, rather than being obtained from prior in-
formation contained in independent (e.g. in situ) datasets. Since optimal estimation
uses Gauss-Newton iterations with the nonlinear forward model in the loop, there is
a tendency to oversimplify the radiative transfer to speed the solution. Atmospheric
parameters that ought to vary according to a prior pdf (because they affect the ob-
servations) are often fixed to simplify and speed the solution. For these reasons and
because the forward function is not linear over the range of retrieval uncertainty, the
retrieval errors from optimal estimation are usually substantially underestimated.

The more general Bayesian formulation has been used in some high frequency
microwave ice cloud retrieval algorithms, usually with a Monte Carlo integration ap-
proach (Evans et al., 2002, 2005; Seo and Liu, 2005; Rydberg et al., 2009). The Monte
Carlo integration (MCI) method randomly generates atmosphere/cloud cases accord-
ing to a prior probability density function and simulates instrument measurements for
each case with a radiative transfer model to create a “retrieval database” of simulated
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observations and corresponding retrieved quantities. Since the cases in the retrieval
database are distributed according to the prior pdf, Monte Carlo integration over the
Bayesian posterior distribution is performed by weighting the retrieved quantities in the
database by the likelihood function. The likelihood function is usually assumed to be
a Gaussian distribution, which is negligible unless the observation vector matches the
simulated observation of the database case within the uncertainties. The standard devi-
ation of the retrieved quantities weighted by the likelihood function can give uncertainty
estimates.

The algorithm of Evans et al. (2002, 2005) generated retrieval databases having dis-
crete ice cloud layers with cloud top altitude from a Gaussian distribution and cloud
thickness from an exponential distribution. The microphysical properties at the top and
bottom of an ice cloud were obtained stochastically from a pdf relating temperature,
IWC, and median mass diameter derived from in situ cloud probe data. For each ice
cloud one of a few particle shapes was chosen randomly. Temperature and relative
humidity profiles were generated stochastically using Empirical Orthogonal Functions
(EOFs) from statistics obtained from soundings. The Bayesian MCIl method was used
to retrieve IWP and median mass diameter from the observations. Seo and Liu (2005)
used EOF analysis to generalize ground-based radar reflectivity profiles and used Z-
IWC relations to derive IWC profiles. Five different mixtures of six particle shapes and
gamma distribution parameters were chosen stochastically. Temperature and humid-
ity profiles were obtained by choosing from many radiosonde profiles. A database of
2.5 x 10° cases was thus generated and used to retrieve IWP from the five AMSU-B
channels. Rydberg et al. (2009) generated three-dimensional (3-D) fields of ice cloud
parameters using CloudSat radar data expanded to 3-D with a stochastic Fourier algo-
rithm (Venema et al., 2006) and a fixed ice particle size distribution parameterization.
Temperature and humidity profiles from ECMWF were stochastically modified to intro-
duce small scale variability. A retrieval database was generated by simulating radiances
for the Odin-SMR limb-sounder at 501 and 544 GHz from the 3-D fields, and Bayesian
MCI was used to retrieve IWC and relative humidity profiles.
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The MCI method uses a database and weighting by the likelihood function to perform
Bayesian retrievals. A related technique uses an a priori retrieval database to train
neural networks to retrieve ice cloud parameters from brightness temperature vectors.
Examples of high frequency microwave retrievals of IWP using this neural network
method include Jimenez et al. (2007) and Defer et al. (2008). Defer et al. (2008) used
a cloud resolving model with several categories of ice particles to generate a database
at frequencies from 24 to 875 GHz to retrieve precipitation rate and IWP.

This paper describes a new Bayesian algorithm that retrieves ice water content, ice
particle size, and water vapor profiles (and vertically integrated cloud parameters) from
microwave radiances and/or from radar reflectivity profiles. The retrieval algorithm is
tested with data from the Compact Scanning Submillimeter-wave Imaging Radiometer
(CoSSIR, Evans et al., 2005) flown on the NASA ER-2 aircraft in July and August 2007
during the Tropical Composition, Cloud and Climate Coupling (TC4) experiment (Toon
et al., 2010). CoSSIR measured brightness temperatures in 11 double sideband chan-
nels around 183.3, 220.0, 380.2, 640.0 and 873.6 GHz. Data are used from the nadir
viewing 94 GHz Cloud Radar System (CRS) (Li et al., 2004), also flown on the ER-2
during TC4, for validation and profile retrievals. The one-dimensional radiative transfer
model implemented in the retrieval algorithm could also operate on infrared and visible
radiances with appropriate ice particle scattering files, though a priori information on
low level clouds would be needed.

A priori profile information is obtained from CloudSat (Stephens et al., 2008) project
files of radar reflectivity, CALIPSO lidar cloud fraction, and ECMWF profiles of tempera-
ture and relative humidity. These profiles are combined with cloud microphysical prob-
ability distributions derived from in situ cloud measurements that describe ice cloud
parameters, relative humidity, and liquid cloud parameters in ice clouds. The a priori
information is transformed to cumulative distribution functions (CDFs) and empirical
orthogonal functions (EOFs) for temperature, relative humidity, and five hydrometeor
parameters at specified layers in the atmosphere. The CDFs capture the complete
single-point statistics of the seven parameters, while the EOFs (from a rank covariance
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matrix) capture some of the relationships in the two-point statistics between different
parameters and layers.

This Bayesian algorithm uses a hybrid Monte Carlo integration and optimization ap-
proach to retrieve quantities with uncertainty estimates. The MCI method is highly effi-
cient because the retrieval database is precomputed, and so the radiative transfer does
not have to be computed for each new observation. MCI does not require the prior
pdf to have a particular functional form, such as the Gaussian distributions assumed
in optimal estimation. The biggest problem with MCI is that, for a finite size retrieval
database, increasing the length of the observation vector or making the observation
uncertainties smaller, results in fewer database cases with a significant contribution
to the Monte Carlo integrals. The hybrid approach developed here uses MCI, but if
not enough database cases match the observation, an optimization is performed to
maximize the posterior pdf. While much slower than MCI, the optimization minimizes
a least squares cost function (assuming a Gaussian likelihood function) using gradient
information to be most efficient. There is also an option to generate the Bayesian pos-
terior distribution using the Markov chain Monte Carlo (MCMC) method, though this is
only practical for testing purposes on a small number of observations. The optimization
method and the generation of a large number of retrieval database cases (e.g. 106) for
MCI requires using an explicit prior probability distribution rather than using CloudSat
profiles individually. Another advantage of using an explicit prior probability distribution
is that there is some ability to extrapolate beyond the particular radar profiles input.

Ice particle size distributions are defined using the particle mass as expressed
by the equivalent mass sphere diameter, D,. The characteristic particle size is the
IWC weighted mean D, and the width of the size distribution is measured by the D,
dispersion:

_ [N (D.)D3D,dD,

Drme = [N (Do)D3dD,

(1)

D, disp =

i [N D30, -0,200, ]
Dine [N (Dg)D3dD,
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Hydrometeor layers above the freezing level can contain ice particles, specified by IWC,
D, and D, dispersion, and liquid cloud droplets, specified by liquid water content
(LWC), D, and a fixed D, dispersion. The ice particles are a mixture of different
shape categories, with the mixing fractions varying in the retrieval database. Below the
freezing level a simple thermodynamical melting model (with no vertical air motions)
is used to calculate the melt fraction of the particles. The a priori microphysics for
the melting/melted particles is that of the ice particles at 273 K. The profiles of IWC,
D, and D, dispersion describe the ice particles above the freezing level and the
melting/melted particles below.

As the new ice cloud profile retrieval algorithm is described in more detail in the
sections below it will be useful to refer to the algorithm flowchart in Fig. 1. The profile
retrieval system is divided into two separate Fortran 90 programs. The first (described
in Sect. 2) generates most of the a priori information and outputs a file of cumulative
distribution functions and combined EQOFs for profiles of temperature, relative humidity,
ice and melting particle IWC, D,,., D, dispersion, and liquid cloud LWC and D,.. The
second program (described in Sect. 3) uses the CDF/EOF file information to create at-
mosphere and hydrometeor profiles with the desired a priori pdf, simulates the observa-
tions with radiative transfer, does Monte Carlo integration Bayesian retrievals, and when
those fail, performs optimization with gradient information to maximize the posterior pdf.
Preparation of the microphysical pdfs from TC4 in situ data is described in Appendix A,
and generation of the scattering tables for hexagonal plate aggregates, sphere aggre-
gates, and snowflake aggregates is discussed in Appendix B. Examples of retrievals
with CoSSIR data, comparison of solution methods, and validation with CRS reflectivi-
ties are shown in Sect. 4. Section 5 discusses pros and cons of the retrieval algorithm,
summarizes the results, and discusses future algorithm improvements.
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2 Generation of the a priori CDF/EOF file

The CDF/EOF generation program uses data from several sources to create the a pri-
ori information for the ice cloud retrieval system. The primary data source is CloudSat
reflectivity profiles, CALIPSO lidar cloud fraction for the CloudSat range bins, and the
corresponding ECMWF profiles of temperature and relative humidity. The secondary
source of a priori information are parameters of several probability distributions ob-
tained from in situ aircraft probes that describe relationships between ice cloud pa-
rameters, liquid cloud parameters, and relative humidity. Profiles of IWC/LWC, D,
and D, dispersion for ice and liquid hydrometeors are generated for each CloudSat
radar profile. Radar reflectivity does not uniquely specify ice cloud microphysical pa-
rameters, of course, so radar reflectivity is combined with the ice particle microphysical
statistics. A stratiform melting model is assumed, so that the microphysical statistics of
melting/melted particles are those of the ice particles at the melting temperature.

Any number of CloudSat granules (GEOPROF, GEOPROF-LIDAR, and ECMWF-
AUX files of one orbit each) may be input, and those profiles in a selected latitude-
longitude box are used. All columns in the designated region or only ones deemed
cloudy may be used. The altitudes of the layer interfaces for analysis and output to the
CDF/EOF file are specified. The ECMWF temperature and relative humidity profiles are
interpolated to the layer interfaces. Hydrometeors are allowed in a specified subset of
the layers, and the radar reflectivity and lidar cloud fraction are averaged/interpolated
to each layer. Cloud reflectivity within three range gates of the surface elevation is not
used.

Parameters of three microphysical probability distributions are input. The most im-
portant one is a Gaussian distribution of 7, In (IWC), In (D,,c), and D, dispersion for
ice particles (where T is temperature). Parameters are input for a Gaussian distribu-
tion of T, In (IWC), In (LWC), In (Dpe jiq) for supercooled cloud droplets (where LWC
is the liquid water content of the droplets, and Dy q is the Dy, of the liquid cloud
droplets). Finally, coefficients are input for the mean and standard deviation of a beta
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distribution of relative humidity in the presence of ice particles (T < 273 K). These coef-
ficients are defined by RH,qo, = 2 + BT + cT? +dIn (IWC) and RHgiggev = € + FIn (IWC).
Appendix A describes the analysis of in situ cloud probes from TC4 to generate the a
priori information input to the CDF/EOF generation program.

Tables that specify the complete scattering information for randomly oriented par-
ticles at the 94 GHz CloudSat radar frequency are used to relate the microphysical
parameters to radar reflectivity. These tables specify the scattering properties as a
function of D, D, dispersion, temperature, and particle shape. There are scattering
tables for the ice particles, the melting/melted ice particles, and cloud liquid droplets.
See Appendix B for a description of the particle shapes used and how these scattering
tables are generated.

Visual inspection shows that a CloudSat reflectivity threshold of —26 dBZ for 500 m
thick layers is required to nearly eliminate spurious cloud detections due to receiver
noise. Depending on the application, significant amounts of ice cloud in the tropics
have radar reflectivity below —26 dBZ. A procedure is developed here to simulate radar
reflectivity for hydrometeor layers that are below the radar threshold, but are known
to be cloudy from the CALIPSO lidar cloud mask (averaged to the CloudSat range
bins in the CloudSat GEOPROF-LIDAR product as described in Mace et al., 2009).
The procedure samples stochastically from a Bayesian posterior probability distribution
function (pdf).

The prior pdf for the simulated reflectivity is the product of three Gaussian pdfs in
dBZ. The first Gaussian prior distribution is for the difference in reflectivity between lay-
ers at the same altitude in adjacent CloudSat columns and assures horizontal smooth-
ness. This pdf has zero mean and standard deviation calculated from the reflectivity
difference of layers in adjacent columns. The second Gaussian prior distribution is for
the difference in reflectivity between vertically adjacent layers in the same column and
assures vertical smoothness and extrapolation to lower reflectivities with height. The
mean and standard deviation of this pdf are calculated from adjacent pairs of layers in
which the upper layer has reflectivity less than that of the lower layer. The statistics for

3128

AMTD
5,3117-3198, 2012

Ice cloud retrieval
algorithm

K. F. Evans et al.

L

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/3117/2012/amtd-5-3117-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/3117/2012/amtd-5-3117-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

these two Gaussian prior pdfs are only accumulated for layers in which the reflectivity is
between the specified threshold (e.g. —26 dBZ) and 5 dBZ greater. The third Gaussian
prior pdf is determined from the reflectivity distribution calculated for each hydrome-
teor layer height from the input (temperature dependent) ice microphysical statistics.
For the tropical examples shown here the ice microphysical pdfs have standard de-
viations around 10 dBZ and means that decrease from -17.4dBZ for 10.0-10.5km
to —36.2dBZ for 14.5-15.0 km. The horizontal smoothness pdf standard deviation is
2.9dBZ and the vertical pdf mean and standard deviation are —5.4 dBZ and 3.7 dBZ.

The Bayesian likelihood pdf for the simulated reflectivity is a Gaussian in reflectiv-
ity factor Z (units of mm® m~3) around the CloudSat measured reflectivity (Zops)- The
Gaussian likelihood pdf standard deviation (o) is the CloudSat range bin noise rms
divided by the square root of the number of CloudSat ranges bins that fit into the layer
thickness. The CloudSat reflectivity noise rms is determined from valid (Z > —88.8 dBZ)
stratospheric range bins in the target region separately for each orbit. For the trop-
ical CloudSat columns used here the mean noise rms is 9.48 x 10™* mm® m™ and
there is only about a 1 % variation among different orbits. The Bayesian posterior pdf
is stochastically sampled by generating samples from the Gaussian prior pdf in dBZ,
converting to Z, and using the rejection method to sample the likelihood function (with
p=exp [—(Z—Zobs)z/og]). Radar reflectivity is simulated for layers with lidar cloud frac-
tion greater than 0.5 for layers completely above the freezing level. Since the stochas-
tically simulated reflectivity depends on neighboring values, the sweeping order is first
in columns and then in layers from bottom to top. Below the ice region the CloudSat
measured reflectivity is used if it is above a threshold, though the threshold depends
on whether the lidar detects cloud. An example of the radar reflectivity profiles with and
without the simulated reflectivity is shown in Fig. 2.

The radar reflectivity and ice/melting particle microphysical statistics are combined
by generating a two-dimensional lookup table in reflectivity and temperature (e.g.
increments of 0.5dBZ and 2.0K, except 0.4K in the melting zone). Each reflectiv-
ity/temperature cell of the table contains the mean and covariance of In (IWC), In (D),
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D, dispersion, and In (A) (where A is the radar attenuation coefficient in dB km™" ). This
table is made with Monte Carlo sampling of the Gaussian distribution of T, In (IWC),
In (D), De dispersion, random ice particle shape mixing fractions, and the appropriate
scattering table (dependingon 7 <273K or T > 273 K).

Although a cumulative distribution can handle the distinction between clear and
cloudy IWC, the rank correlation EOF procedure for generating correlated distributions
of parameters does not work well with a large lump of probability for clear sky. Thus
layers identified as clear are set to very small, random values that are correlated in
the vertical. The correlation matrix for generating these fictious reflectivity values is
calculated from the radar reflectivities above the noise threshold. The mean and stan-
dard deviation of these stochastic reflectivities for clear layers is —80dBZ and 1dBZ,
respectivity.

The lookup table is used to generate several stochastic hydrometeor parameter pro-
files for each CloudSat reflectivity profile. First, the CloudSat reflectivity profiles are
corrected for molecular attenuation with the absorption profile provided in the GEO-
PROF file. For each hydrometeor profile four independent stochastic profiles of zero
mean/unit variance Gaussian deviates are generated having the same vertical corre-
lations as the radar reflectivity. These Gaussian profiles are used with the reflectiv-
ity/temperature lookup table to stochastically generate IWC, D,,., D, dispersion, and
attenuation (dB km‘1) that agree with the CloudSat reflectivity profile, have statistics
consistent with the a priori ice microphysics distribution, and are vertically correlated
like the radar profile. If a particular reflectivity is smaller than available in the lookup ta-
ble then a Rayleigh scattering extrapolation is performed. The microphysical generation
process proceeds from top down, so that the generated radar attenuation (which is con-
sistent with the hydrometeor parameters) can be applied to correct the radar reflectivity
profile. If the attenuation correction exceeds 30 dB then the reflectivity is held constant
for the rest of the profile. If the reflectivity below the melting level falls below —20 dBZ,
then the rest of the profile is set to stochastic clear sky values. Thus, the radar-based
hydrometeor generation process is only used for ice particles and melting/melted ice
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particles (i.e. rain) and not for boundary layer clouds or shallow convection. If this al-
gorithm was applied to lower frequency microwave or infrared data then it would be
necessary to add lower level clouds to the model. In deep convection multiple scatter-
ing affects CloudSat reflectivity profiles (e.g. Battaglia et al., 2008), but this is mainly a
problem for the rain layer, which is not so important in this application.

Liquid cloud LWC and D, for layers above the melting level are generated stochas-
tically using the Gaussian distribution in 7, In(IWC), In (LWC), In (D jiq) With vertical
correlations according to the radar correlation matrix, but with some thresholds applied.
There is no supercooled liquid cloud colder than a threshold temperature (e.g. 240K
to be consistent with the data used to generate the distribution). If the generated lig-
uid cloud LWC is below 0.01g m~2 then it is set to zero, since the Bergeron-Findeisen
process would tend to eliminate small LWC in the presence of ice crystals. The cloud
liquid water content and D,,,, below the melting level are linearly interpolated between
that of the lowest supercooled layer and the lifting condensation level.

The relative humidity profile from the CloudSat ECMWEF file is adjusted in the pres-
ence of significant ice water content using the coefficients of the beta distribution mean
and standard deviation. The IWC has to be above a threshold (now 0.001 g m‘3) be-
fore the relative humidity is adjusted. Instead of choosing a beta deviate randomly, the
“probability” (0 to 1) of the ECMWF relative humidity in its cumulative distribution is
translated to the beta deviate. Thus a low ECMWF humidity will result in a relative hu-
midity from the low end of the beta distribution that depends on temperature and IWC.
This procedure also results in the relative humidity having reasonable vertical correla-
tions. If there is nonzero cloud liquid water content in a layer then the relative humidity
is set to 100 %.

Cumulative distribution functions are made by sorting the temperature and relative
humidity for each profile level and the hydrometeor parameters (IWC, D,,., D, disper-
sion and liquid cloud LWC and D,,;) for each hydrometeor layer (over all the radar
profiles). At this point, the seven parameters for each level/layer in the profiles are rep-
resented by the probability or rank in the CDFs. A type of rank correlation matrix is
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used to generate the EOFs with the desired correlations. Thus the joint probability dis-
tribution between two variables (e.g. IWC and D, in two layers) is represented by a
single number, i.e. the correlation. To make the correlations more representative of the
important relationships for ice cloud retrievals, only those columns with IWP above a
specified threshold (e.g. 10 g m_2) are used for the correlations, though all columns are
used for the CDFs. The ranks or probabilities representing the profiles are converted
to Gaussian deviates and assembled into a single long vector. Gaussian distributions
work best with EOFs because linear combinations of independent Gaussian deviates
remain Gaussian. The covariance matrix is calculated for these zero mean, unit vari-
ance Gaussian deviates. The eigenvectors of the covariance matrix are the EOFs. The
output CDF/EOF file contains the heights of the profile levels and hydrometeor layers;
the CDFs of temperature, relative humidity, IWC, D, D, dispersion, and liquid cloud
LWC and D,,; the intercept and slope of the In (IWC)-In (D,,,¢) clear sky threshold for
each cloud layer, and the Gaussian EOF eigenvalues and eigenvectors.

A CDF/EOF file is produced from the 41 CloudSat orbits that have lidar cloud frac-
tion and intersect the target region of 4° N to 12° N and 90° W to 80° W (the TC4 Pacific
ocean region) in July and August 2007. A total of 32403 radar columns (cloudy and
clear) are used, with three stochastic hydrometeor profiles generated for each radar
column. Of the 97 209 stochastic hydrometeor profiles, 46 191 have ice water path
above 10g m~2 and are used in the EOF covariance matrix. The layer thickness in most
of the ice region is 0.5 km, with 0.2 km resolution in the main melting region. The cumu-
lative distribution functions are output at 201 points, and the 43 temperature/humidity
levels and 32 hydrometeor layers results in an EOF vector length of 246.

Figures 3 to 5 show examples of the CDFs as profiles of each parameter for seven
percentiles (0, 5, 25, 50, 75, 95, and 100) in the cumulative distributions. The dots
on the median profile show the temperature/humidity levels or the hydrometeor layer
centers. The temperature profiles show the small range of temperature typical of the
tropical troposphere. The relative humidities have a large possible range in the ice cloud
region, though 50 % are in a much smaller range that generally decreases with height
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in the ice cloud region (about 5 to 15km). The a priori IWC profiles have a tremendous
range from effectively clear (<107° g m~°) to about 10 g m~3. Similarly, D, ranges from
below 15pum to above 1500 um, though the maximum D, generally decreases with
height. The 95th percentile of IWC shows that the highest IWC are deep, ranging from
the surface to about 14 km. The highest layer cloud fraction (up to 45 % for 0.5 km lay-
ers) is in the anvil region from 10 to 14 km. Including the correlations between layers,
the resulting cloud fraction is about 89 %. The peak layer liquid cloud fraction is about
11 % near the melting level. Figure 6 shows the covariance matrix used to make the
EOFs with each part of the matrix labeled by the parameters. Nearby layers of temper-
ature, relative humidity, IWC, and D, are highly correlated. IWC and D,,, of the same
layer have a reasonably high rank correlation. The fairly high correlation between rela-
tive humidity and IWC can be seen. Although there seems to be a lot of information in
the covariance matrix, and hence the EOFs, it should be noted that there is only one
number to represent the relationship between any two variables, which is a tiny fraction
of the information contained in a joint probability distribution.

3 Ice cloud/humidity profile retrieval process

The inputs to the retrieval program are (1) the CDF/EOF file of a priori information, (2)
a file of observation vectors (with o;’s and viewing directions), (3) a retrieval database
file, and (4) many parameters and files that define the characteristics of the retrievals
and measurements and provide data for the radiative transfer calculations. The retrieval
program is run in one of two modes: (1) generate and output a retrieval database, or
(2) read a retrieval database and perform retrievals. For each database “case”, an at-
mosphere/cloud profile is generated with the desired a priori information from the EOF
file information, and then the radiative transfer is done to simulate the observations.
The atmosphere/cloud profile generation process begins with generating a vector of
standard Gaussian random deviates (&), most of which are used to drive the EOFs. The
number of EOFs used is user specified, and may be chosen, for example, to include
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99 % of the variance. The Gaussian deviates are multiplied by the square root of the
eigenvalues to make the random EOF coefficients, which are then multiplied by the
eigenvector matrix to give a long vector of correlated Gaussian distributed elements.
Gaussian random deviates are used because the Gaussian distribution shape is pre-
served upon the linear EOF transformation. These Gaussian distributed elements are
converted to “probabilities” with uniform distributions between 0 and 1 using the stan-
dard error function. These correlated “probabilities” are then used to index into the
temperature, relative humidity, and hydrometeor CDFs to produce the correlated pro-
files. The relative humidities are converted water vapor mixing ratio g, since that is
what the radiative transfer routines require. This conversion requires the pressure pro-
file, which is derived from the temperature profile using the hypsometric equation. If the
relative humidity profile is to be a retrieved quantity, then desired levels are stored in
the retrieval vector.

The hydrometeor profiles are IWC, D,,., and D, dispersion for the ice/melted parti-
cles, and the LWC and D, for cloud liquid droplets. The IWC-D,,, values are com-
pared to the linear in In (IWC)-In (D) threshold to create “clear” layers. This threshold
is actually applied with a smooth function to preserve differentiability, and results in
multiplying the IWC by 0.001 if it is on the clear side. If the layer temperature is below
the melting temperature the IWC and D, are used for the ice particle component, and
if the temperature is above the melting temperature the IWC and D, are used for the
melting/melted particle component. Again, this temperature threshold is implemented
with a smooth exponential that quickly varies between 0 and 1. The liquid cloud droplet
IWC and D, are applied to the third component and the D, dispersion is set to 0.3.
In the radiative transfer each component is associated with its own set of scattering
tables (one for each frequency).

Another set of (Mayershape + 1) Nshape Gaussian deviates (¢) are used to control the
ice particle shape mixing fraction of the Ny, POssible shapes in the scattering tables
at Njayershape + 1 heights in the hydrometeor profiles. Testing finds that linear interpo-
lation over the whole ice region (Njayershape = 1) gives an adequate number of degrees
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of freedom for particle shape. The Gaussian deviates are converted to uniformly dis-
tributed deviates and linearly interpolated in height to Ngp,e fractions at each hydrom-
eteor layer. These fractions are then adjusted according to the layer D, so that the
mixing fraction is set to zero for particle shapes for which the D, is outside the range
in the scattering tables (and the shape mixing fractions sum to 1). Thus, the particle
shape mixing fractions are not controlled by the a priori CDF/EOF process, but are
considered completely unknown prior to the observations. There is, however, prior in-
formation about the particle shape in that only certain shapes are available at a given
D\, for example, hail is only available for D, > 398 um.

Four vertically integrated quantities, IWP, average D,,,, median IWP height (Z,eq),
and melted liquid water path (LWP), are calculated from the IWC and D, profiles
and stored in the retrieval vector. The IWC weighted shape mixing fractions and cloud
droplet LWP are also stored in the retrieval vector. If desired, the IWC and D, profiles
at a specified resolution are stored in the retrieval vector.

3.1 Radiative transfer

The second part of making the retrieval database is the radiative transfer. Currently, the
1-D radiative transfer for passive radiometers is calculated with SHDOMPPDA (Evans,
2007), though there could be options for other radiative transfer models in the future.
SHDOMPPDA was chosen because an adjoint, which is needed for the optimization,
was already developed. It can perform unpolarized solar and thermal emission radiative
transfer for randomly oriented particles, and is flexible in the trade off between accuracy
and computational efficiency. The radiative transfer module also supports calculating
radar reflectivity profiles and vertically integrated backscattering, which includes atten-
uation by gases and particles. A k-distribution system is used to calculate molecular
absorption given the profiles of temperature, pressure, water vapor and ozone mixing
ratio. The script for generating the k-distribution table for each channel with LBLRTM
(Clough et al., 2005) includes the spectral response of the channel. For CoSSIR and
CRS a fourth order Butterworth filter response is assumed for the bandpasses, and, of
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course, only one “k” is needed for these nearly monochromatic channels. The surface
reflection is simply specified with the mean and standard deviation of the stochastically
varied Lambertian emissivity, which is either completely correlated or uncorrelated be-
tween channels. A few elements of the Gaussian deviate vector ¢ are used to vary the
surface emissivity.

The single scattering properties are input with a scattering table for each channel.
The scattering tables have the extinction, single scattering albedo, and Legendre se-
ries of the phase function tabulated as a function of D,,,., D, dispersion, particle shape,
and temperature. The temperature dependence is needed in the microwave, especially
for liquid water, but also for the weak absorption of ice. The range of D,,, tabulated
varies with particle shape. The optical properties are interpolated in In (D,,,c), D, dis-
persion, and temperature using successive cubic splines. The gradients of cubic spline
interpolation are continuous, which is important for the gradient-based optimization cal-
culation. A trilinear interpolation option is also available if optimization is not going to
be used. Interpolation is performed on log extinction, single scattering albedo, and the
Legendre coefficients.

3.2 MCI and optimization retrieval methods

The primary and most efficient solution method used in the ice cloud profile Bayesian
retrieval algorithm is Monte Carlo integration (MCI) (e.g. Evans et al., 2002). Random
atmospheric/cloud profiles distributed according to the a priori pdf are generated as
described above. The retrieval database contains the desired retrieved quantities (e.qg.
IWP, mean D,,., Zmeq @nd perhaps IWC/D,,. and relative humidity profiles) and the
associated simulated observations (e.g. brightness temperature for each channel and
a radar reflectivity profile) for one or more viewing angles. Specified simulated channels
in the retrieval database may be treated as retrieved parameters, so that one instrument
may be used to retrieve observables of another for comparison.

The MCI algorithm calculates the conditional pdf (or likelihood function) in Bayes the-
orem, which is assumed to be an uncorrelated Gaussian distribution in the difference
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between the simulated and measured observations. Since the database cases are dis-
tributed according to the a priori pdf, the conditional pdf is the same as the posterior pdf:

Nchan <y/(.Sim) - y(.ObS)> ?

15 5 J
Poost X OXP (=50°)  x*= 2 - 2
/=1 Ji
where y/(.Sim) and y/(.Obs) are the simulated and measured observations in channel j with

a combined measurement and forward modeling uncertainty of o;. The retrieved quan-
tities (e.g. IWP) are the posterior pdf weighted means,

W ex -1 2
M/ret - ZI ! p( 2/1//) , (3)

> exp (-3x7)
and the retrieved uncertainty is the weighted standard deviation. There is an option to
perform the integration in log space for the cloud parameters (IWC and D,,,;). The prob-
ability of an ice cloud is retrieved from the ratio of the sum of the posterior probability
of cases using

1
Pcloud = z exp (_51,2) for IWP; > IWP e,
i

S o0 30 )
If a particular measurement is flagged as bad, then the corresponding o; is multiplied
by 1000 to effectively ignore it. For a cross-track scanning instrument there are multiple
viewing angles stored in the retrieval database and the simulated observations are
interpolated to the actual observation viewing angle. If the number of database cases
with a ,1'2 less than a user specified threshold is below a specified number, then the
Monte Carlo integration is said to have failed, and the slower optimization process is
begun for that observation vector.
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The control vector for the optimization is the independent Gaussian deviates (¢), not
the geophysical variables derived from them in making the atmosphere/cloud profiles.
This is natural given the connection to the Monte Carlo integration retrieval method,
and means that the atmosphere/cloud/surface a priori information is contained in the
function that relates the geophysical variables (x) to the control vector, i.e. x = G (¢).
In data assimilation this approach is called control variable transformation (Bannister,
2008). If the radiative transfer function is F; (x), the posterior pdf is then maximized by
minimizing the cost function (J):

M Mo (v - F1G (@)])°

J=z¢f2+ z 2 (5)
i=1

j=1 9
The first term is the formal background or a priori from the independent Gaussian dis-
tribution of the state vector elements ¢;, while the second term is the observational ,1/2.
This assumes that the observational uncertainties combined with the radiative transfer
errors are Gaussian and independent in each channel. Internal to the retrieval program
the database stores the control vectors (¢), and the optimization is initialized with the
¢ of the case having the minimum )(2.

The advantage of having the cost function in the least squares form is that the robust
and efficient Levenberg-Marquardt minimization method may be used. The quadratic
form of the formal background term in the cost function also means that the optimal
estimation framework of Rodgers (2000) may be applied even though the real a pri-
ori distribution (contained in G (¢)) is highly non-Gaussian. The Levenberg-Marquardt
formulation described in Rodgers (2000) (Sect. 5.7) is implemented. This requires the
Jacobian of the forward function F[G (£)], or the K matrix in the notation of Rodgers.
The K matrix is calculated using the adjoint of the radiative transfer for each channel
(F; (x)) and the adjoint of the a priori function G (&) that calculates the geophysical

J
variables from the control vector.
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The optimization process to find the retrieval solution does not provide the uncer-
tainties of the retrieval, as the Monte Carlo integration method does. The local Gaus-
sian approximation used in the optimal estimation framework (Rodgers, 2000) is im-
plemented to distribute points around the solution (¢.,,) in control vector space to
characterize the retrieval uncertainty. The local Gaussian approximation method com-
putes the optimal estimation error covariance matrix. This assumes that the forward
function F [G (£)] is only moderately non-linear, so that the linearization and Gaussian
distribution assumptions are valid. The optimal estimation posterior error covariance
matrix is

S-= (3;1 + KTS;1K)_1 (6)

where K is the linearization matrix of F [G ()], S, is the observational error covari-

ance matrix, assumed here to be diagonal with elements aj?, S, is the a priori error
covariance matrix, which here is the covariance of ¢ and is thus the identity matrix.
The Cholesky decomposition of S is used to generate random points with a corre-
lated Gaussian distribution around ¢,,,. Of course, we are not interested in the error
characterization in control vector space, so the random points in ¢ are transformed to
the atmosphere/cloud profiles and a Monte Carlo integration is done over the retrieval
quantities. Since this step does not involve radiative transfer, a large number of Monte
Carlo samples (e.g. 1000) can be used in the integration.

3.3 Markov Chain Monte Carlo solution method

The Markov Chain Monte Carlo (MCMC) method has been applied in atmospheric

remote sensing for several low dimensional retrieval problems (e.g. Tamminen and

Kyrola, 2001; Posselt et al., 2008). Here a more advanced “stochastic approximation

adaptive” MCMC approach, basically Algorithm 4 in Andrieu and Thoms (2002), is

used. The MCMC method creates a Markov chain of control vectors ¢, that are dis-

tributed according to the Bayesian posterior distribution, which here is exp (-J/2). The
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Markov chain is started at the optimization end point (¢,,i,), SO iterations are not wasted
finding the high probability region of the control vector space. The basic Metropolis al-
gorithm step of MCMC is to calculate a trial control vector point in the Markov chain
¢1ial from the current point ¢; using a symmetric “proposal distribution” centered on ¢;.
The cost function, J (&4), at the trial point is computed and compared to the current
point cost function, J (¢;), by defining an acceptance ratio, a,

a=MN{1,exp (-3 1Y ) -/ €] )} )

The trial point is accepted, ¢;, ¢ = &yiap» if @ uniform random number is less than the ac-
ceptance ratio, and otherwise ¢;,1 = &, (the current point is reused). In adaptive MCMC
the proposal distribution is updated according to the history of the Markov chain, i.e.
the ¢; vectors. As is usually done, here the proposal distribution is taken to be a multi-
variate Gaussian distribution with covariance matrix 4,Z;, so that ¢, is sampled from
N (¢, A,;Z;). The “stochastic approximation” part of the adaptive MCMC algorithm is
that the mean (u;) and covariance matrix (Z;) of the control vectors are continuously
updated according to a relaxation parameter y that smoothly decreases to zero:

Hivq1 =M+ Vi€ — 1))
2 =2+ Vi (& — )& - ﬂi)T -2;]. (8)

Since this updating formula is not guaranteed to keep the covariance matrix positive
definite and the Cholesky decomposition of X is needed to generate the random trial
points, actually the Cholesky decomposition is updated. The Cholesky updating for-
mula in Sect. 5.1.1 of Andrieu and Thoms (2002) is incorrect, so an algorithm that is
first order in y was derived from the Cholesky decomposition algorithm. The proposal
distribution covariance scaling parameter 4; is also updated with a stochastic approxi-
mation formula
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div1 = Aiexplyj (@ -a)], 9)

so that the mean acceptance ratio converges to the target a, = 0.234. Here the relax-
ation parameter y is decreased according to a power law in the iteration number /,
specified by the power and final relaxation parameter value (though y is not allowed
to exceed 0.01). After a burn in fraction of the total number of iterations, the proposal
distribution updating is stopped and the MCMC points are used in a Monte Carlo inte-
gration over the posterior distribution to calculate the mean parameters for the retrievals
and the standard deviations for the errors. In this application the number of iterations
must be very large (>105) so that the MCMC solution method is impractical for use on
whole datasets. The MCMC method is, however, useful for comparison with the other
solution methods for a small number of pixels.

4 Example retrieval results

During TC4 CoSSIR measured brightness temperatures in channels around 183.3,
220.0, 380.2, 640.0 and 873.6 GHz, all with matched beamwidths of about 4°. The
CoSSIR scanning pattern consisted of three parts during each 10 s scan: forward and
aft conical scans and two quick cross-track scans through nadir. The beam dwell (in-
tegration) time is 100 ms for the conical scans, but only 10ms for nadir view, which
results in about three times the receiver noise for nadir pixels. Due to hardware prob-
lems during the campaign, CoSSIR data from ice clouds are available only for the
17 July, 19 July, and 8 August flights. The Cloud Radar System (CRS) is a Doppler,
polarimetric radar, though only the reflectivity profiles from the NASA Earth Science
Project (ESPO) Office archive are used here. The CRS antenna beamwidth is 0.6° by
0.8° and views nadir. The CRS sensitivity is —29 dBZe at 10 km range with 150 m range
resolution and 1 s averaging.

Retrievals are performed mostly with CoSSIR nadir viewing data obtained during
19 July from 9 CoSSIR channels (183.3+ 1.0, 3.0, 6.6, 220, 380.2+ 1.8, 3.3, 6.2,
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640V, and 874 GHz). The CoSSIR uncertainties (o’s), obtained from calibration tar-
get fluctuation statistics, are 1.60, 1.62, 1.59, 1.59, 2.00, 2.45, 2.36, 2.38, 4.03K for
the 9 channels used on 19 July. Retrievals from CoSSIR brightness temperatures are
also done for the same 9 channels on 17 July and for 6 channels on 8 August (without
the 380 GHz channels because the 380 GHz receiver failed). The CoSSIR uncertain-
ties (o’s) are somewhat different for these two other flights. The CoSSIR channels may
be used to retrieve 94 GHz radar reflectivity profiles. The profile retrieval algorithm may
also operate on CRS reflectivity profiles alone or with CoSSIR nadir data. When CRS
radar reflectivity is input to the retrieval it is averaged to 20 layers from 5 to 15km
and has a multiplicative uncertainty of 0.4 (about 1.5dB). The CRS radar additive un-
certainty is calculated from a clear region, and ranges from about 0.0028 mm®m™
(—25.5dBZ) near the surface to about 0.0003 mm®m™3 (-35dBZ) at 15km.

The retrievals are performed using the CDF/EOF file for which results are shown
in Sect. 2. The first 146 EOFs of the total of 246, which have 99 % of the variance
are used. Monte Carlo integration retrievals are done with a retrieval database of 10°
cases. At least 25 cases with a reduced y? less than 2 are required for a successful
integration retrieval (and no more than 1000 are used to reduce computation). The
SHDOMPPDA radiative transfer is done with four discrete ordinates in zenith angle.
The mean ocean surface emissivity is that of flat water (from the Fresnel formula) plus
0.06 to approximate ocean roughening, and the standard deviation of surface emissiv-
ity is 0.03. The ice scattering tables usually have four particle shapes (hexagonal plate
aggregates, sphere aggregates or graupel, dendrite aggregates, and solid spherical
hail), but some results are shown for retrievals with three shapes (excluding the hail).
See Appendix B for the rationale and details about these particle shapes. Scattering
tables are also input for the melting/melted particles corresponding to the ice parti-
cles, and for liquid cloud droplets. The relative humidity profile from 1 to 15km and 21
layer profiles of IWC and D, are retrieved (from 4.5 to 15km). The cloud parame-
ter retrievals are done in log-space, which means that the uncertainties are standard
deviations of In (IWC) and In (D,,,¢) (translated into 1-sigma error ranges for the plots).
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Except as noted, all retrievals below use the hybrid approach of Monte Carlo integra-
tion followed by cost function optimization if too few database cases match the obser-
vations. Figure 7 shows selected CoSSIR nadir brightness temperatures, the retrieved
probability of cloud, and the ice water path. The correspondence between the bright-
ness temperature depressions and the retrieved IWP is easily seen. The retrieved prob-
ability of ice cloud is the Bayesian cloud probability given the CoSSIR measurements
because the a priori data includes all CloudSat profiles (clear and cloudy). Somewhat
arbitrarily a retrieved probability threshold of 0.95 is chosen to indicate cloud. The re-
trieved ice water path, D,,., and median IWP cloud height, all with error bars, for the
cloudy pixels on 19 July are shown in Fig. 8. Over the 568 cloudy pixels the IWP
ranges from 35¢g m~2 to about 11 000 g m~2 (1 to 99 percentiles), while the D, ranges
from 82 um to 665 um. The retrieved IWP error bars (one sigma in In (IWP)) tend to be
smaller for larger IWP and range from 0.21 to 1.8. The high altitude cirrus around 15.2h
is retrieved due to the small brightness temperature depressions at 640 and 874 GHz,
as no depression is seen at 220 GHz.

Figures 9 and 10 compare retrievals for scattering tables with three particle shapes
and four shapes. Including solid ice hail (4 shapes) substantially reduces the minimum
)(2 (better agreement with the CoSSIR observations) in high IWP regions. Using four
shapes also results in more consistent retrieved shape mixing fractions from 13.8 to
13.9h, where high hail fractions are retrieved. The four shape retrievals have smaller
IWP in the high IWP regions than the three shape retrievals, presumably because
solid ice spheres are more efficient at microwave scattering. Even with the addition of
the “hail” particle shape, the high IWP regions still have ,}/2 that is too high. Perhaps
further refinement of the scattering particle shape models could improve the fit to the
CoSSIR data. Figures 11 and 12 show that the minimum ,1/2 for two other flights seldom
is greater than the 99 % significance level. The ,1/2 bursts on 8 August are almost all
associated with obvious “noise” on the 874 GHz channel (e.g. spikes at 874 GHz with
no change at 640 GHz, though this is difficult to see in Fig. 12 without an expanded
time scale).
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Retrievals of ice water path and IWP error from Monte Carlo integration (MCI) and
the optimization/local Gaussian method are compared in Fig. 13. The computer pro-
cessing time for these nadir pixels is 0.21 s per pixel for the MCI method and 2.32 s per
pixel for the optimization method. There are only optimization points for the largest IWP
pixels where the MCI method does not have enough matching cases in the database
for a retrieval. There are differences in the IWP retrievals between the two methods,
but there is good agreement except for clear pixels. In clear sky the optimization some-
times retrieves an IWP of zero (not seen on the log scale) and sometimes retrieves a
significantly non-zero value. When optimization retrieves an IWP of zero, the retrieved
In (IWP) error is very large, but when the method retrieves a larger IWP for clear sky the
In (IWP) error is between 0.5 and 2 (factors of 1.6 to 7.4 in IWP). There are substantial
differences between the local Gaussian approximation retrievals of In (IWP) error and
the more reliable MCI retrievals. To quantify this, for the 249 pixels (out of 568 cloudy
pixels) with MCI retrieved IWP >100g m~2 the difference in In (IWP) error (local Gaus-
sian — MCI) has a mean of 0.044 and a standard deviation of 0.224. For comparison
the MCI In (IWP) error for these pixels has a mean of 0.572 and a standard deviation
of 0.277. To see if MCI does indeed provide a more accurate IWP error than the local
Gaussian approximation, the Markov Chain Monte Carlo (MCMC) method is used for
24 pixels. The MCMC solution method is run with 200000 iterations (MC points), a
burn in fraction of 0.5, a final relaxation parameter of 107°, and a relaxation parameter
power of 0.3. The computer time for the MCMC method is 1720 s per pixel. Figure 14
shows the comparison for the three solution methods. MCMC and MClI retrievals of IWP
usually agree very well, while for some pixels the optimization is substantially different
(though within the error bars). For the In (IWP) errors there is usually good agreement
between MCIl and MCMC and worse agreement with the local Gaussian approximation.
The median absolute difference in In (IWP) error for local Gaussian — MCl is 0.178, for
local Gaussian — MCMC is 0.133, and for MCI — MCMC is 0.043.

Validation of the CoSSIR ice cloud retrievals is made here by comparing 94 GHz
vertically integrated backscattering and radar reflectivity profiles retrieved from CoSSIR
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data with those from the Cloud Radar System (Li et al., 2004). The 94 GHz backscatter-
ing from the CRS and CoSSIR retrievals is integrated from 5 to 15km. The integrated
backscattering has units of sr™', but the Bayesian integration and presentation is in dB
(sr'1 )- Figure 15 shows the integrated backscattering comparison for the 19 July flight.
The CoSSIR retrieved integrated backscattering agrees with that from CRS consistent
with the retrieved 1-sigma error bars, and there is little apparent bias. Figure 16 shows
the integrated backscattering comparison for all three flights. Again, the agreement is
quite good over a factor of 1000. The 17 July and 8 August flights show a tendency for
the greatest integrated backscattering to be a little less than the CRS values. Table 1
gives statistics of the integrated backscattering comparison for all the cloudy pixels.
The rms difference is around 3 dB, and the linear correlation is between 0.94 and 0.96.
The reduced ,1'2 shows that the CoSSIR retrieved error bars are reasonably correct,
considering that errors in CRS reflectivity or the volume mismatch between the two
sensors are not included.

The ability of the algorithm to retrieve profiles is evaluated by comparing CoSSIR re-
trieved and CRS 94 GHz reflectivity profiles in Fig. 17. The CoSSIR Bayesian integra-
tion retrievals are done in dBZ. There is clearly some ability of CoSSIR to retrieve ver-
tical profile information. The high altitude strong echos around 13.55 and 13.72h and
the general shape of the anvil echo between 13.75 and 13.95 h are seen in the CoSSIR
retrieved profiles. The lower altitude ice reflectivity structure is retrieved poorly, which
is not surprising given that water vapor blocks the higher frequency channels seeing
the mid-troposphere. The higher altitude structure is retrieved well by CoSSIR when
the reflectivity is high enough. More quantitatively for this flight, the rms difference be-
tween CoSSIR retrieved and CRS reflectivity in 1 km layers with CRS reflectivity above
5dBZ is between 2.2 and 3.1 dB from 9 to 13km, but increases to between 7.6 and
9.2dB from 5 to 8km.

Figures 18 to 20 show time-height images of retrieved profiles of ice water content
and D, from the Bayesian profile retrieval algorithm for inputs of CoSSIR alone, CRS
alone, and the combination of CoSSIR and CRS data. Considering the large difference
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between the passive CoSSIR and active CRS, the agreement is quite good, certainly
within the error range. The CoSSIR and CRS combined retrievals have a smaller error
range, though the profiles are less continuous in time, which might be due to mis-
matched fields of view.

Figure 21 shows time-height images of relative humidity retrievals and error range
made with nadir CoSSIR data. The relative humidity in deep ice cloud regions from
about 3km to 8 km is usually exactly 1.0 when retrieved using the optimization (i.e.
the most probable posterior value). Since the retrieved error is symmetric, this leads to
an unphysical upper error range above 1.0. It is possible that the a priori relationship
between relative humidity and In (IWC) is too strong. Outside of thick ice cloud there
is real humidity structure retrieved with the CoSSIR 183 and 380 GHz channels. No
validation of the relative humidity retrievals is shown.

Although CoSSIR is a scanning radiometer, the results shown to this point have been
from the (noisier) nadir brightness temperature data, which allows direct comparison
with the Cloud Radar System data and facilitates visualization of retrieved profiles.
Figure 22 shows IWP and D, retrievals for CoSSIR forward conical scans. The re-
trievals are visualized by showing the CoSSIR beams as ellipses (1.25 km by 1.75 km)
projected at 5 km altitude in a latitude-longitude map projection. Significant ice hydrom-
eteor structure can be seen across the swath width of about 36 km (at 5 km altitude)
along the flight track over two convective systems. The IWP and D,,,, maps have some-
what different patterns, showing that IWP and D, are partially independent.

5 Conclusions

This article describes a Bayesian algorithm to retrieve ice water content, ice particle
size (Dp,e), and relative humidity profiles from millimeter-wave and submillimeter-wave
brightness temperatures. The prior pdf of cumulative distribution functions (CDFs) and
EOFs for seven parameters and many layers is derived from the CloudSat radar re-
flectivity, lidar cloud fraction and ECMWF temperature and humidity profiles combined
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with three cloud microphysical pdfs obtained from in situ cloud probes. Retrievals from
the Bayesian posterior pdf are obtained with Monte Carlo integration (MCI) and, when
there are too few matching database cases, optimization to maximize the posterior pdf.
Summaries of the algorithm are provided in Sect. 1 and in the flowchart of Fig. 1.

Expressing the Bayesian prior pdf in terms of CDFs allows for arbitrary (non-
Gaussian) distributions, while the EOFs provide crucial correlations between the tem-
perature, humidity, and the five hydrometeor parameters at all levels in the profile. The
explicit prior function allows the Monte Carlo integration to be performed with any num-
ber of columns, and thus generalizes the information in the CloudSat columns used to
make the prior pdf. Formulating the a priori information in the forward function with the
radiative transfer (through a control variable transform) allows the use of the optimal
estimation framework for a non-Gaussian prior. The hybrid solution method uses the
highly efficient MCI method, but supplements it with optimization when there are not
enough MCI database cases to match the observations. A poor match to observations
after optimization (high ,1/2) indicates something is wrong with the observation vector or
with the a priori or radiative transfer model. The advantage of using CloudSat associ-
ated data for a major part of the a priori information is that they provide rich information
on vertical ice cloud structure anywhere around the world. Basing the microphysical
pdfs on in situ data provides an objective method of introducing required additional a
priori information.

A disavantage of using cloud microphysical probability distributions obtained from
in situ data is that they must be prepared for each region/season and can suffer from
limitations of particular cloud probes and aircraft sampling. While the CDFs contain the
complete single point statistical information, the EOFs, which are based on a corre-
lation matrix, have only limited information about all higher order statistics. Since this
algorithm is primarily about retrieving ice hydrometeors from high frequency microwave
radiometer data, it mostly ignores clouds below the melting level. There are no bound-
ary layer clouds, for example, though the CDF/EOF framework includes profiles of liquid
water content and particle size, so low level cloud could be included. The ice particle
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melting model described in Appendix B4 is very simplified in that it assumes no updafts
and ignores evaporation, condensation, collection, and drop shedding. In addition, no
raindrop microphysical pdfs are used, since the melting particle microphysics is based
on the ice microphysics at the melting level. The significant limitations of the radia-
tive transfer modeling are the common assumptions of randomly oriented particles and
one-dimensional transfer.

Example retrieval results are mainly from CoSSIR data obtained on 19 July 2007
during TC4. Nadir retrievals are shown of the probability of ice clouds, and (with er-
ror bars) ice water path, D, and median IWP height. A comparison of the minimum
,1/2 and shape mixing fractions between retrievals including and excluding hail in the
scattering tables indicated that in some convective regions solid ice hail was needed
in addition to sphere aggregates (graupel) and snowflake aggregates. A comparison of
the MCI and optimization methods showed that the retrieved IWP usually agreed well
except for clear pixels. The agreement between MCI and optimization for the retrieved
In (IWP) error was poorer, likely because the local Gaussian assumption used for re-
trieving uncertainties with optimization was violated. The Markov chain Monte Carlo
retrievals for two dozen pixels agree significantly better with the MCI method than the
optimization method.

The ice particle retrieval results are validated by comparing vertically integrated
94 GHz backscattering retrieved by CoSSIR with those measured by the Cloud Radar
System on the same ER-2 aircraft. On three flights the rms difference between CoS-
SIR retrieved and CRS integrated backscattering for cloudy pixels is around 3 dB (over
a 30dB range) with a linear correlation of about 0.95. The integrated backscattering
agreement is consistent with the retrieved error bars and is better for larger values. A
comparison is shown between CoSSIR retrieved and CRS radar reflectivity profiles.
The error bars on the retrieved profiles are much larger than for the vertical integral,
of course, but there is clearly some ability to retrieve profile information. Where the ice
particle scattering signal is strong enough and at higher altitudes (>9 km), CoSSIR re-
trieved reflectivity agrees well with the CRS reflectivity (rms differences <3 dBZ). Nadir
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retrievals of IWC and D,,, using the Bayesian profile retrieval algorithm with CoSSIR
data alone, CRS data alone, and the combination of CoSSIR and CRS data are shown
for comparison. CoSSIR retrievals of IWP and D,,,, for the forward conical scan in map
view show interesting horizontal structure. CoSSIR retrievals of nadir relative humidity
profiles are also shown.

The ice cloud profile retrieval algorithm described here could be extended in a num-
ber of ways in the future. The code currently handles thermal emission and radar ob-
servables. No code changes are required to input infrared radiances in addition to mi-
crowave brightness temperatures, though particle scattering tables and k-distribution
files would be needed for the infrared channels. Since the SHDOMPPDA model also
performs solar radiative transfer, only minor changes would be required for the addition
of visible radiances. Including infrared and visible radiances would likely require the
addition of low level liquid cloud to the prior pdf. The CloudSat radar is not sensitive
enough to probe the full range of liquid clouds, but perhaps ground-based cloud radars
could be combined with microphysical information from in situ cloud probes. Includ-
ing lower frequency microwave radiances would require a more correct formulation of
the a priori raindrop information and an improved surface emissivity model, as well as
the addition of low level liquid clouds. A priori information about vertical rain structure
could be provided by lower frequency satellite radars. One area of improvement even
for high frequency microwave observations would be the inclusion of a priori ice particle
shape information if relevant parameters, such as particle density, were available from
in situ cloud probes. And finally, applying this retrieval algorithm to different ice cloud
situations (e.g. wintertime synoptic systems) would require a different selection of ice
particle shapes in the scattering tables and different microphysical input parameters.
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Appendix A

Analysis of TC4 in situ aircraft cloud microphysical data

The cloud microphysical probability distributions input to the ice cloud profile retrieval
algorithm are derived from in situ data from instruments flown in TC4. The key prob-
ability distribution is the multi-variate Gaussian distribution relating 7 (temperature),
In (IWC), In (D), and D, dispersion for ice particles. The in situ ice particle size dis-
tributions are obtained from the two-dimensional stereo (2D-S) probe that flew on the
DC-8 and WB-57 aircraft and the Precipitation Imaging Probe (PIP) that flew on the
DC-8. The 2D-S probe has true 10 um pixel resolution with 128 photodiode linear ar-
rays and fast electronics (Lawson et al., 2006). The 2D-S has horizontal and verti-
cal channels, though only the horizontal channel is used for the DC-8 probe and the
vertical channel for the WB-57 probe. The PIP probe has 100 um pixels and 64 pho-
todiodes, and is used to sample larger ice particles. Data files for all the in situ in-
struments are obtained from the NASA Earth Science Project (ESPO) Office archive
(http://espoarchive.nasa.gov/archive/browse/tc4). The 2D-S and PIP files are available
for the 11 DC-8 flights, and 2D-S files are available for the 4 WB-57 flights. While
the 2D-S data files tabulate the size distributions up to a maximum dimension of
around 3000 um, the 2D-S and PIP number concentration spectra usually agree well for
Dinax < 1000 pm, but the 2D-S number concentration increasingly falls below the PIP’s
for larger sizes. So for the DC-8 the 2D-S data are used for D,,,, < 1200 pm and the PIP
for 1200 < D5, < 10000 pm, while for the WB-57 only the 2D-S data are used (larger
particles are very rare at the WB-57 altitudes). The 1s 2D-S samples are averaged to
5 s samples to match the PIP.

As discussed in Sect. 1, the size distributions used in the ice cloud retrieval
algorithm are based on particle mass or equivalent sphere diameter defined by

D,=[6 m/(,o,-7r)]1/3, where m is the particle mass and p; = O.917gcm‘3 is the density
of ice. The 2D-S and PIP probes measure shadowgraphs from which the maximum
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diameter (D,,,5x) @and projected area (A) are derived (the PIP files only have D, num-
ber concentration spectra). For consistency, power-law relationships between D, and
A (for the 2D-S) and D, and D, (for the PIP) are obtained from three non-spherical
ice particle shapes used in the scattering calculations (see Appendix B for details on
these shapes). Figure A1 shows the D.-A and D,-D,,,, scatterplots for the three par-
ticle shapes and the resulting fits. The power-law relation used for the 2D-S data is
D, =0.574 A%429 (units of mm and mm2), which is close to the one that SPEC used for
to process the 2D-S data (D, = min{0.621 A>*% D }). The power-law fit used for the
PIP data is D, = 0.299 D%agfs. The sphere aggregate shape has a substantially different
curve from the other two shapes in the D,-D,,,, scatterplot, but it is not feasible in the
retrieval algorithm to have separate fits for each shape.

The IWC, Dy, and D, dispersion (op_/Dy,e) are calculated for each size distribution
from

PiT 3
Mj==c=DeN; , IWC= > M,
J
“M.D M.D?
Dme=—z’ L4 _2MPe (A1)

2;M; o M
where N, is the number concentration in bin j and D, is obtained either from the pro-
jected area or D,,,, in bin j using the power law relationships. The size distribution
parameters are then merged with temperature from the Meteorological Measurement
System (MMS) on either platform, and samples with temperatures above 270K are
removed. Histograms of the resulting IWC, D,,,., and D, dispersion for all DC-8 flights,
WB-57 flights, and both sets combined are shown in Fig. A2. The size distributions
from both aircraft cover a rather wide range of values, but the WB-57 does not have
the highest values of IWC and D,,, because it flew at colder temperatures and stayed
out of the updrafts. There are many fewer samples for the WB-57 because it only flew
on four flights. A scatterplot of D, versus temperature is shown in Fig. A3. There is
a fairly strong correlation between the typical particle size as measured by D,,, and
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temperature over the whole range of temperatures. The DC-8 ceiling limits the mini-
mum temperature to about 215K, but the WB-57 extends the temperature to 193 K.
Figure A4 shows the relationship between D, and IWC for the size distributions from
the two aircraft. There is clearly a correlation between D, and IWC, though the pattern
is not simply bivariate log-normal.

One difficulty with using aircraft microphysical data for ice cloud a priori information
is that it is seldom completely representative of the natural distribution of cloud ice mi-
crophysics. The issues of the size ranges to which different probes are sensitive, and
of converting from 2-D optical probes to the mass related parameters have already
been discussed. Another issue is that during typical field campaigns the aircraft sam-
pling is seldom random and complete, partly due to aircraft limitations and partly due
to the multiple objectives of the campaign. In the case of TC4, the aircraft sampling
was constrained by the ceiling of the DC-8, the limited participation by the higher al-
titude WB-57, the need to avoid strong updrafts in convective cores, and the science
objectives of sampling the outflow anvils (mostly colder than 230 K). Thus the ice mi-
crophysics scatterplots shown in Fig. A4 are certainly biased. About 75 % of the data
lies between temperatures of 215K and 235K, and for this reason and others 50 %
of the D,,,, lie between 100 pm and 175 pm (though the maximum D, is greater than
1600 pm).

Rather than use an empirical probability distribution of ice microphysics based on
the 2D-S and PIP data, a multi-variate normal (Gaussian) distribution in temperature,
In (IWC), In (D,,c), and D, dispersion is used. This allows the microphysical pdf to be
specified with only a few parameters, use the a priori idea that IWC and D,,, are ap-
proximately log-normal, generalize the microphysical data to some extent, and use the
all important correlation between temperature, D,,., and IWC. Since the TC4 micro-
physical dataset used here is decidedly non-Gaussian, one has to be careful about
calculating the parameters of the equivalent multi-variate Gaussian pdf. For exam-
ple, in the 2D-S/PIP dataset In (IWC) has a long negative tail representing very low
IWC values. Using the traditional method to calculate the parameters of the Gaussian
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distribution In (IWC) results in a large standard deviation, which leads to extremely
large a priori IWC (e.g. 3sigma IWC at 273K is 167 g m~2). Instead two percentiles of
the microphysical distribution are used to characterize the equivalent Gaussian distri-
bution. For In (IWC) the median and 95th percentile (p4 = 0.5, p, = 0.95) are used; for
In (Dpe) p1 =0.5, p, =0.90; for temperature p; = 0.05, p, = 0.95; and for D, dispersion
py=0.25, p, =0.75. The equivalent Gaussian correlations between the four parame-
ters are obtained from rank correlations, which are non-parametric. As in Sect. 2, the
cumulative distribution probability of each dimension is converted to a standard normal
distribution value for each sample, and the correlation of these Gaussian variables are
calculated using a covariance matrix. The resulting parameters of the ice microphysics
Gaussian distribution are listed in Table A1. The table also lists some of the IWC and
D, that the Gaussian distribution generates for certain given temperatures.

In moderate to strong updrafts we expect supercooled liquid cloud droplets to occa-
sionally coexist with ice particles. It is important to include supercooled cloud droplets in
a microwave retrieval algorithm because liquid droplets are much more absorbing than
ice particles, and so potentially can significantly affect the upwelling brightness tem-
peratures. To include appropriate a priori information on supercooled droplets, the re-
lationship between liquid cloud water content (LWC) and mass weighted mean droplet
diameter (D), and temperature and ice water content is sought. During TC4 there
were no cloud probes that could accurately measure liquid cloud droplets in the pres-
ence of ice particles. The only cloud probe on the DC-8 designed to count and size
cloud droplets was the Cloud and Aerosol Spectrometer (CAS) (Baumgardner et al.,
2001) from Droplet Measurement Technologies. The CAS has no way to distinguish
between small ice particles and liquid droplets. Furthermore, Jensen et al. (2009) es-
tablished that the CAS is highly susceptible to spurious high concentrations of small
particles due to shattering of large ice crystals on the CAS inlet. Nevertheless, CAS
data is used here with a variety of thresholds to reduce the ice particle contamination.
The resulting liquid cloud droplet distributions are still highly suspect, and should be
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thought of more as a placeholder, in that it is better to have some a priori distribution
of supercooled cloud droplets than assume none in the retrieval algorithm.

The CAS data are used for seven DC-8 flights for which it was working during TC4.
The LWC and D,,, are calculated from the number concentration spectra, and then
merged with the MMS temperature and the 2D-S/PIP IWC. Samples with temperature
outside the range 240 to 273 K, with D, dispersion greater than 0.4, with D,,,, outside
the range from 8 to 40 um, or with IWC less than 10'6gm‘3 are removed. The CAS
LWC is multiplied by a linear factor in temperature (0 at 240K, 1 at 273 K) to attempt
to distinguish between small ice crystals and cloud droplets. A multi-variate Gaussian
distribution in temperature, In (IWC), In (LWC), In (Dpe iq) is fit to the data using the
robust percentile method described for the ice microphysical distribution. The mean
In (LWC) is —6.24 (median supercooled LWC is 0.00195¢g m’s), and the standard de-
viation of In (LWC) is 2.29 (so 99th percentile LWC is 0.71 gm_s) . The correlation
between In (IWC) (ice particles) and In (LWC) (supercooled droplets) is 0.55, and be-
tween temperature and In (LWC) is 0.61.

Due to the large scale nature of the ECMWF fields, the relative humidity profiles
do not have realistic correlation with cloud ice water content. During TC4 the Diode
Laser Hygrometer (DLH, Diskin et al., 2002) on the DC-8 and the JPL Laser Hygrom-
eter (JLH) on the WB-57 accurately measured water vapor density in the presence of
ice particles. The laser hygrometer data for 11 DC-8 flights and 4 WB-57 flights are
merged with MMS temperature and pressure, converted to relative humidity with re-
spect to liquid, and merged with the 2D-S/PIP ice water content. To determine how
the relative humidity depends on temperature and IWC, samples are grouped into 10K
bins of temperature and factor of 10 bins in IWC. The median relative humidity and the
range from the 25th to 75th percentiles for the temperature and IWC bins is graphed
in Fig. A5. The median relative humidity increases with temperature, slowly at first
below 230K, and then more rapidly. The median relative humidity tends to increase
with IWC, though not so much at the higher temperature bins (which have many fewer
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samples, though). The width of the relative humidity distribution has little temperature
dependence but does decrease with increasing IWC.

A beta distribution of relative humidity is assumed with the mean and standard devi-
ation depending on temperature (T) and IWC according to

RHpean = @+ bT + T2 +dIn (IWC)
RHgigqey = € + FIn (IWC) . (A2)

The coefficients are obtained from the relative humidity samples with temperature less
than 270 K by minimizing the negative of the log likelihood of the beta distribution pdf
with the downhill simplex method. The resulting coefficients are a = 6.989, b = -0.0571,
¢ =0.0001309, d =0.01417, e =0.03844, f = -0.007965, for T in Kand IWC in g m=3.

Appendix B

Particle shape models and preparation of scattering tables

Particle shape is the most difficult part of ice cloud remote sensing, and that is also true
for submillimeter-wave sensing. The longer wavelengths of cloud radars and millimeter-
wave and submillimeter-wave radiometers are sensitive to larger particles and the
broader features of particle shape, as compared with visible and infrared sensing. Here
the word shape refers to a set of related ice particle shapes over a wide range of sizes,
i.e. not one well defined shape that is simply scaled with size. Although some ice crys-
tal shapes and sizes are known to fall with a prefered orientation, the radiative transfer
model used in the retrieval program assumes randomly oriented particles, and so that
is assumed for the ice particle scattering calculations. In this work particle shapes are
sought to model the microwave radiative properties of ice particles in tropical convec-
tive cores, stratiform regions, and cirrus anvils. The goal is not the impossible task of
simulating all of the possible ice particle shapes in tropical convection, but to have a few
types of realistic particle shapes that span the relevant properties of randomly oriented
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particles, such that mixtures of these particles can simulate the microwave radiative
transfer of the the actual ensemble of particles found in nature.

B1 Hexagonal plate and sphere aggregates

As reported in Evans et al. (2005) Cloud Particle Imager pictures of ice particles in
convective anvils sampled in CRYSTAL-FACE were mostly irregular particles, and of-
ten aggregates of spheres or hexagonal plates. When 10* to 10° spheres are aggre-
gated the sphere aggregates would appear to be a good model of graupel, which is an
appropriate particle type for tropical convective cores. The 30 um diameter stochastic
ice sphere aggregates modeled in Evans et al. (2005) are extended here on the high
end to larger number of sphere monomers (up to 315000) and on the low end by ice
spheres ranging from 2 to 30 um in diameter. The two sizes of hexagonal plate ag-
gregates modeled in Evans et al. (2005) are extended here only on the low end with
single hexagonal plates ranging in maximum diameter from 5 to 250 um. The low den-
sity ice spheres modeled in Evans et al. (2005) are not used here because microwave
scattering properties of equivalent spheres are a very poor approximation to accurate
calculations of complex realistic shaped ice particles (e.g. Kulie et al., 2010).

B2 Snowflake aggregation model

Graupel is one type of large ice particles associated with precipitation in convective
systems, but a lower density particle type is needed to model snowflake aggregates
associated with stratiform regions. Snowflake aggregates are modeled here with a
physically-based simulation of aggregation of two-dimensional dendritic crystals. The
2-D dendritic crystals are generated with the semi-physical crystal depositional growth
simulation code of Gravner and Griffeath (2008). There is no method for mapping their
eight input parameters to temperature and vapor pressure, so many simulations with
random parameters were performed and dendritic crystals selected subjectively. These
2-D dendrites are assigned a thickness depending on diameter from the Auer and Veal
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(1970) power-law formula for thickness of dendrites. Petty and Huang (2010) generated
random aggregates of dendrites digitized from snow crystal microphotographs, which
were then used for modeling lower freqency microwave scattering.

The 2-D dendrites are aggregated in a Monte Carlo physical simulation similar to
Maruyama and Fujiyoshi (2005), who used sphere monomers. A large number of parti-
cles are introduced to a fixed volume with an initial gamma size distribution in equivalent
volume diameter. The Monte Carlo aggregation method is based on Gillespie (1975).
The collision rate is calculated for all pairs of particles using the relative fall speeds
and the convex circumscribed area and perimeter of the particles. The Heymsfield and
Westbrook (2010) parameterization for fall speeds is used. The particles are assumed
to fall with a horizontal orientation. A pair of particles is randomly selected to collide
according to the collision rate matrix. The centroids of the two particles are randomly
offset within a convex polygon given by the convex hull of the faster falling particle ex-
panded by the "radius” of the slower particle. The particle being collected is randomly
rotated over all three axes. The two particles are then combined vertically until they
overlap by some small fraction (5 % used here) of the mass of the lower particle. There
is no physical fitting together of the dendrite branches or breaking of the snowflakes.
Each snowflake aggregate is represented by a list of the position, rotation matrices, and
3-D array of filled voxels of its dendrite components. The upper (collecting) and lower
(collected) particles in a collision are rendered into a large 3-D array to determine if
and at what offset the two particles join. After a collision, if a particle moment of inertia
principal axis is more than a specified angle from vertical (2° used here), the particle
is rotated so that it is back in balance. New pristine crystals from the original gamma
distribution may be stochastically created according to a vapor deposition mass rate.
Aggregates that have fallen more than a specified distance, which tend to be the largest
fastest falling ones, are removed from the simulation volume, but included in the output.

The snowflake aggregates used in the scattering tables are generated in one aggre-
gation simulation. The input crystals to the simulation were 56 2-D dendrites ranging in
diameter from 100 to 2000 um. The input dendrites have 2 um pixel size, but the voxel
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size in the aggregation simulation is 16 pm, and the output grid resolution used for scat-
tering calculations is 32 um. There are 3000 initial particles, made from multiple copies
of the input 56 dendrites, having an ice water content of 0.1g m~ and an initial gamma
distribution D, of 300 um. The fall speed calculations are carried out at 400 mb pres-
sure and —15°C (the temperature of maximum dendritic growth). The snowflakes are
given 4000 m before falling out of the aggregation zone. The vapor mass deposition
rate is 1.5 x 107* g m~3s™", and the simulation time is 3h. The aggregation simulation
ends with 1429 in cloud particles (with an IWC of 0.208 g m‘3) and 56 fallen aggregates
(with a melted precipitation depth of 5.85 mm). Of these snowflakes 89 were chosen
for the scattering calculations, ranging in equivalent diameter (D,) from 51 to 1986 pm
and maximum diameter from 128 to 8884 um. The goal of the selection was to choose
three aggregates in each 0.5dB D, bin with aspect ratios spaced from the median
to the maximum, or if only unaggregated dendrites are in the size bin then to choose
different dendrites. This approach results in a variety of snowflake aggregate morpholo-
gies covering a large range of particle sizes for making size distributions. Renderings
of seven of the snowflakes are shown in Fig. B2.

B3 DDA calculations for the scattering tables

Results in Sect. 4 show that the radiative transfer modeling is a poor fit to the CoSSIR
brightness temperatures in some high IWP situations with ice particle mixtures of the
plate aggregates, sphere aggregates, and snow aggregates. The fits improved with the
addition of large solid ice spheres meant to represent hail. Thus, most results presented
are for scattering tables including four particle shapes (or types).

Except for ice spheres, the scattering calculations for randomly oriented ice parti-
cles are computed with the discrete dipole approximation (DDA). This method divides
the particle up into many dipoles with the dipole size being small compared to the
wavelength; generally the dipole size is 32 um or smaller. The dipole discretization of
a particular particle is kept the same for all frequencies. The matrix inversion option
of the DDA code described in Evans and Stephens (1995a) is used for particles with
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5000 or fewer dipoles. For larger particles (and all snowflake aggregates) the ADDA
code of Yurkin and Hoekstra (2011) is run, which uses the FFT conjugate-gradient
solution method and can be run on parallel processors. A least squares fitting proce-
dure is used to convert the phase (Mueller) matrix ADDA output as a function of angle
to Legendre series coefficients. The ice indices of refraction are from Matzler (2006).
The DDA computations are performed for 18 hexagonal plates, 40 plate aggregates,
36 sphere aggregates, and 89 snow aggregates.

The scattering tables contain the extinction, single scattering albedo, and Legen-
dre coefficients of the phase function for gamma size distributions (in D) of randomly
oriented particles. The scattering properties are tabulated as a function of Do, D, dis-
persion, particle shape, and temperature. The range of D, available in a scattering
table depends on the particle shape (see Table B1), mainly due to choices about what
sizes are appropriate for each shape. There are usually two particle shapes available
at each D, so that there is uncertainty due to particle shape. The D,,, are always
spaced at 0.5 dB intervals. Four D, dispersions (size distribution widths) are tabulated
in the scattering tables, namely at 0.1, 0.3, 0.5, and 0.7. The temperature dependence
of the ice scattering properties is represented with two temperatures, namely 215K
and 260 K. The real part of the index of refraction of ice at submillimeter wavelengths
varies linearly in temperature. The imaginary index actually varies nearly quadratically
in temperature, but since the imaginary part is small, the error in scattering properties
is deemed not significant using these two well placed temperatures. Using two temper-
atures decreases the scattering computations and the interpolation time.

B4 Melting model

The lower frequencies of CoSSIR, such as 220 GHz and 183.3 + 6.6 GHz, have sub-

stantial sensitivity to hydrometeors below the melting level, though have little sensitivity

to the surface or boundary layer in tropical atmospheres. Therefore an ice cloud re-

trieval algorithm for CoSSIR, and millimeter-wave radiometers in general, needs to

model melting ice, raindrops, and cloud droplets below the melting level. The approach
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taken here is to use a simple melting model of the ice particles, which is appropriate for
stratiform regions (small updrafts). This melting model is implemented in the scatter-
ing tables, in which the scattering properties are a function of temperature, rather than
explicitly in the CDF/EOF generation program or retrieval program.

The melting model operates on single particles, and uses a fallspeed relation and
a heat transfer parameterization to calculate the melted mass fraction as a function of
height, and thus temperature using a specified lapse rate. The diameter of the initial ice
particle is taken to be the area equivalent diameter. The particles are assumed to be
spherical, and the fall velocity is obtained from Heymsfield and Westbrook (2010). The
particle mass that melts as it falls a distance dz is from Eq. (1) in Bauer et al. (2000),
which is derived from a Rutledge and Hobbs (1983) parameterization that includes
ventilation. The diameter D,,, of the melting particle is obtained from

D3, = D2+ (1 -1,)D? (B1)

where f,,, is the melted mass fraction, D; is the equivalent area diameter of the original
ice particle, and D, is the diameter of the fully melted raindrop (from the ice particle
mass). This melting model ignores collection, evaporation, and liquid shedding, and
assumes that the updraft velocity is negligible.

The microwave scattering properties of the melting particles are calculated for
spheroids using the T-matrix method code of Mishchenko (Mishchenko and Travis,
1998). Since assuming spheroids and a dielectric mixing rule is a poor approxima-
tion to the microwave scattering properties of realistic large ice particles, a radiatively
equivalent sphere or spheroid is found to match the DDA ice scattering properties of
the ice particle. First the DDA ice scattering properties are extrapolated in temperature
to 273.2K. An attempt is made to match three scattering quantities with Mie theory
for spheres by adjusting the “scattering” radius and the real and imaginary parts of
the index of refraction of the ice/air mixture. For radar backscattering (i.e. 94 GHz) the
fractional difference in backscatter and extinction and the difference in single scattering
albedo are minimized. For the radiometer channels the fraction difference in extinction

3160

AMTD
5,3117-3198, 2012

Ice cloud retrieval
algorithm

K. F. Evans et al.

L

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/3117/2012/amtd-5-3117-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/3117/2012/amtd-5-3117-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

and the difference single scattering albedo and asymmetry parameter are minimized.
In both cases the downhill simplex simulated annealing method is used to minimize
an objective function that combines the three scattering quantities. Usually a perfect
match to the three DDA scattering quantities can be found using the radiatively equiva-
lent sphere concept. If an excellent sphere match is not found then the T-matrix method
is used to find a matching spheroid by adjusting the equivalent radius, aspect ratio, and
index of refraction. When the scattering properties of the melting particles are calcu-
lated with the T-matrix method, it is the DDA matching ice spheroid properties (radius,
aspect ratio, and index of refraction) that are mixed with the water properties. The di-
electric constant of the melting particle is calculated with the Maxwell Garnett formula
mixing for ice/air inclusions in water, and the index of refraction of water is from Ray
(1972). The particle temperature is at the melting point until the particle is fully melted,
and then the ambient temperature is assumed. The T-matrix radius is obtained by in-
terpolating between the cubes of the raindrop radius and the DDA matching radius
using the melted mass fraction f,,. The aspect ratio is found by linearly interpolation
with 7,,. When the DDA properties are matched by Mie theory, then the aspect ratio of
the melting particle remains at 1. After the particle is fully melted, a spherical shape
is assumed and the T-matrix calculations are done for liquid water for the rest of the
profile.

Once the scattering properties of the single melting and melted particles are cal-
culated, the scattering properties over gamma size distributions are assembled into
scattering tables. The structure of the melting particle scattering tables must be the
same as that of the ice particles, except for the different temperature range, of course.
The scattering properties of the melting/melted particles are calculated at 20 tempera-
tures ranging from 272 to 300K (0.5 K spacing from 273 to 277 K, 1.0K spacing from
277 to 282K, and 2.0 K spacing from 282 to 290 K).
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Table 1. Statistics on the comparison of the Cloud Radar System and CoSSIR retrieved ver-
tically integrated 94 GHz backscattering. The four statistics are the rms difference (dB), the
bias or mean difference (dB), the reduced ,1/2 using the retrieved error bars, and the linear
correlation.

Flight rms  bias y?/N  corr

17 July 329 125 1.63 0.962
19 July 270 080 155 0.962
8 August 3.02 -0.19 0.89 0.944
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Cumulative Distribution/EOF Generation Process Ice Cloud and Humidity Retrieval

Scattering tables
-distribution files

Make retrieval database
For each case:
1) Generate T/RH/hydrometeor profiles from
Gaussian random deviates using EOFs/CDFs.
2) Calculate quantities to retrieve from profiles.
3) Perform radiative transfer to simulate instrument
brightne: and radar

Retrieval
Observation file Database

Monte Carlo Integration to retrieve
mean and std. dev. over posterior pdf
for each retrieved quantity

CloudSat files:
profiles of reflectivity,
lidar cloud fraction,
and ECMWF T & RH

Interpolate profiles to T/RH levels
and hydrometeor layers

Make table of ice/melting microphysics (IWC,Dme,disp,atten)
mean & for each and radar cell

Microphysics pdfs:
ice particle p(T,IWC,Dme,disp)
liquid cloud p(T,IWC,LWC,Dme)
relative humidity p(RH;T,IWC)

94 GHz scattering tables

Simulate radar reflectivity below threshold in "7

lidar cloudy ice layers and make cloud mask

Generate stochastic hydrometeor profiles for each radar profile:
1) Use reflectivity and temperature profiles with table to generate
ice/melting IWC, Dme, disp & radar attenuation.
2) Use IWC and T to generate liquid cloud LWC and Dme.
3) Use T and IWC to adjust RH if IWC>threshold.

Too few
database cases
with x2 < threshold

Retrieved quantities
and error bars

Sort T, RH, ice IWC,Dme,disp, liquid LWC,Dme
for each level/layer to make CDFs

Calculate Gaussian rank covariance matrix
for columns with IWP>threshold
and make EOFs from covariance matrix

CDFs for 7 variables at all levels/layers
and eigenvalues & EOFs

Fig. 1. Flowchart of the Bayesian ice cloud profile retrieval algorithm. Abbreviations used: “T”
for temperature, “RH” for relative humidity, “IWC” for ice water content, “IWP” for ice water
path, “LWC” for cloud liquid water content, “Dme” for mean IWC weighted equivalent sphere
diameter, “disp” for D, dispersion (a measure of the size distribution width), “atten” for radar
attenuation, “CDF” for cumulative distribution function, “EOF” for empirical orthogonal function,
and “pdf” for probability density function.

L, Optimization procedure:

1) Levenberg-Marquardt minimization of cost function
to find most probable state for retrieved quantities.

2) Sample optimal estimation Gaussian posterior pdf
for error bars.
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Fig. 2. An example of the stochastic simulation of radar reflectivity for lidar identified cloudy
layers with CloudSat reflectivity below —26 dBZ. For each pair of radar profiles the top strip uses
a —26 dBZ threshold without simulated reflectivity and the bottom strip includes the simulated
reflectivity. There are 1600 CloudSat columns from two separate orbits over the TC4 region.
The layers in this example are all 0.5 km thick.
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Fig. 7. CoSSIR brightness temperatures for four channels (top). Retrieved probability of ice
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(bottom).
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Fig. 11. CoSSIR brightness temperatures from 17 July for four channels (top). Retrieved ice e
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Fig. 12. CoSSIR brightness temperatures from 8 August for four channels (top). Retrieved ice e
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Fig. 14. Ice water path retrieved using Monte Carlo integration, optimization, and Markov Chain
Monte Carlo (top) for 24 selected pixels (sorted in order of MCMC IWP). In (IWP) error retrieved
using MCI, local Gaussian approximation, and MCMC methods (bottom).

3183

AMTD
5,3117-3198, 2012

Ice cloud retrieval
algorithm

K. F. Evans et al.

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/3117/2012/amtd-5-3117-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/3117/2012/amtd-5-3117-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

AMTD
5,3117-3198, 2012

CoSSIR Retrieved and CRS Integrated 94 GHz Backscatter

.15 |
Ice cloud retrieval
— algorithm
©-20 | 1 K. F. Evans et al.
)
g
é -25 ¢ 7 Title Page ‘
i
:
S -
©
E I— e
:
o RGN B
9
£ -3+ R
x B
[9))]
8 B N
© 40t | '
¥4l
- Full Screen / Esc
_45 K H L H 4 L L L L
-45 -40 -35 -30 -25 -20 -15

CRS Integrated Backscattering (dB sr'l) Printer-friendly Version

Interactive Discussion
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CRS and CoSSIR Retrieved 94 GHz Reflectivity (19 July 2007)
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Fig. 17. A comparison of Cloud Radar System and CoSSIR retrieved 94 GHz radar reflectiv-
ity profiles for CoSSIR determined cloudy columns. The 1-sigma error range of the retrieved
reflectivity profiles is shown with the images above and below the CoSSIR retrieved profiles.
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CoSSIR Retrieved IWC and D,,, Profiles (19 July 2007)

M H g_ e
|

IwcC

15km)

4.5kml

IWClerr

14.0 145 15.0
Time (UTC hour)
I T [ [ [[TTT T[T T
10* 10° 10 t 10° 10

10
Ice Water Content (g m™)

.0 145 15.0
Time (UTC hour)
T T [ [ TT T T T T T T
20 50 126 317 796 2000

Mean Mass Weighted Equivalent Sphere Diameter (1um)

Fig. 18. Ice water content and D, profiles retrieved from nadir CoSSIR data. For each variable
the middle time-height cross section is the retrieval and the upper and lower images show the
one standard deviation error range.
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CoSSIR & CRS Retrieved IWC and D, Profiles (19 July 2007)
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Fig. 20. Ice water content and D, profiles retrieved from nadir CoSSIR and Cloud Radar
System data.
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CoSSIR Forward Conical Scan Ice Water Path (19 July 2007)

log(Dme) (um)

Fig. 22. Ice water path (a) and D, (b) of cloudy pixels retrieved from CoSSIR forward conical
scans. The log color scale for IWP is from 20 to 20000 g m™~2, while the log color scale for D, is
from 30 to 1000 um. Only pixels with an ER-2 roll angle <5° are used. The pixels are projected
to 5 km altitude. The longitude range is 90.2° W to 94.6° W, and the latitude range is from 6.8° N
to 10.0° N. The retrievals are from 13.2 to 14.5h UTC on 19 July 2007.
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Fig. A1. The equivalent volume sphere diameter as a function of average projected area and
average maximum diameter for randomly oriented particles used in the retrieval algorithm scat-
tering tables. The power-law fits used for the 2D-S probe (top) and PIP (bottom) are also shown.
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Fig. A2. Histograms of ice water content (IWC), IWC weighted mean equivalent sphere di-
ameter (D,,.), and equivalent diameter (D,) dispersion from in situ cloud probes. The 2D-S Interactive Discussion
& PIP size distributions from the DC-8, the 2D-S size distributions from the WB-57, and both
combined are shown.
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Interactive Discussion
Fig. A3. Scatterplot of D,,, versus temperature for in situ size distributions from the DC-8 and

from the WB-57. The clusters of samples at particular temperatures are due to extended flight
segments at particular altitudes.
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Fig. A5. Relative humidity median and distribution width (25 % to 75 % range) as a function of
temperature for four ice water content bins.
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Fig. B2. Images showing seven snowflake aggregates, each from three perspectives: view of
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